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Abstract-In the present paper, the effects of uplift, friction and capillarity for liquid-saturated
porous solids are discussed by use of general porous media theories (mixture theories extended by
the volume fraction concept). Preceded by several historical remarks on former approaches to
a.m. effects, the present investigation is based on a macroscopic binary model of incompressible
constituents where, in the constitutive range, use is made of the second-grade character of general
heterogeneous media. As a direct consequence of this procedure, the magnitudes of uplift, friction
and capillarity effects are easily determined. thus solving an old problem in applied engineering.

1. INTROOUCfION

Motivated by a public discussion about the state of "heavy-weight" masonry dams ("Der
Spiegel", 1986), the present article concerns the discussion of three fundamental mechanical
effects for liquid-saturated porous solids, namely the effects ofuplift, friction and capillarity
by applying general porous media theories to practical civil engineering problems.

In particular, the problem ofuplift seems to be very important, since the "heavy-weight"
masonry dams of Prof. Intzet and his disciples built about the turn of the century, in a
certain sense, run the risk of breaking, compare, e.g. the well-known accidents of Epinal,
France in 1895 or Austin, Pennsylvania, U.S.A. in 1911 (Vogel, 1982). However, several
dams built using the Intze principle are still functioning all over the world. Although
dams as well as other liquid-saturated porous solids are subjected to the "principle of
Archimedes", Intze et al. neglected the effect of uplift. Thus, in their calculations, they used
the total weight of the dam and not the weight reduced by uplift. This crucial fact led to
the result that later, several scientists elaborated on the uplift problem; at first especially
in connection with dams and in the following period with respect to general porous media.
Concerning the forces acting upon the solid phase of liquid-saturated porous media, the
main question that had to be answered was: "Is it necessary to take into account the full
value of the uplift force; is it sufficient to use any reduced value or is it even admissible to
neglect the uplift completely?" In applied engineering, this question arises not only in
connection with masonry or concrete dams but also for soil mechanical problems, e.g. in
connection with seepage flow through earth dams.

In investigating the uplift question, it was only natural that other mechanical problems
occurred to be discussed, namely the questions of friction and capillarity. There has never
been any doubt about the existence of aU these effects for liquid-saturated porous media,
but the magnitude of uplift, friction and capillary forces was in dispute. Concerning the
question of uplift one came to realize that, with respect to the principle of Archimedes, the
unreduced value must be effective. On the other hand, the different proofs of this result are
difficult to understand, since some of them are based, e.g., on certain investigations of
strength of materials, whereas others use special intersecting techniques to arrive at the
desired result.

Nowadays, however, the question of the magnitude of uplift, friction and capillary
forces can be answered on the basis of commonly accepted thermodynamical principles by
use of porous media theories (mixture theories extended by the volume fraction concept).

t Otto Intte (1843-1904) was Professor at the RWTH Aachen and in his time one of the famous engineers for
dam constructions.
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Concerning a broad review of mixture theories (heterogeneously composed continua with
internal interactions) and porous media theories, respectively, the reader is referred to e.g.
Bowen (1976), Atkin and Craine (l976a,b), Drumheller (1978), Bowen (1980, 1982),
Bedford and Drumheller (1983), Bowen (1984), de Boer and Ehlers (1986, 1988a,b) or
Ehlers (1988, 1989b,c).

Within the framework of porous media theories, a macroscopic formulation ofliquid­
saturated porous solids is employed by the assumption of a binary mixture ofsuperimposed
but immiscible constituents. In assuming a statistical distribution of the single constituents
through the control space, all mechanical quantities of the model are described via average
functions of the macroscale. Since the solid material itself can be considered to be incom­
pressible (the constituent compressibility of the matrix material, in general, is much smaller
than the compressibility of the average bulk material), the theory is based on an incom­
pressible binary model governed by a single temperature.

In the scope of general porous media theories, the development of thermodynamical
restrictions and constitutive equations must be based on the assumption of second-grade
materials, thus avoiding "simple" results as concluded from former approaches to porous
media, compare, e.g. the different publications of Biot cited in de Boer and Ehlers (1988a).
In the literature, the concept of second-grade materials was introduced to mixture theories
by Miiller (1968) and discussed in more detail by Cross (1973). Concerning incompressible
porous media models, materials of second grade have been used by Kenyon (1976), Bowen
(1980, 1984) and Ehlers (1988, 1989b,c).

Proceeding from these approaches, the contribution of the present article is to show
how the effects of uplift, friction and capillarity apply to the general theory stated above.
To obtain a survey of former discussion on uplift, friction and capillarity effects in porous
media (including the different errors that have been made), Section 2 offers some historical
remarks, however, without asserting the claim of completeness. With respect to porous
media theories, Section 3 concerns a brief review of the fundamental and constitutive
equations of an incompressible solid matrix saturated by an incompressible viscous pore
liquid. From these results, the question of the magnitude of uplift, friction and capillary
forces is clarified in Section 4, thus solving an old problem in applied engineering.

2. HISTORICAL REMARKS

The scientific discussion on uplift in porous media started when Fillunger (1913)
specified the uplift force especially with respect to dam constructions, viz, :

(1)

In this equation, k defines the gradient of the fluid pressure which Fillunger assumed to be
constant and V is the total volume of the liquid-saturated porous solid. The quantities nF

and nF' are the volume and surface porosity coefficients (Fillunger, 1913, used the symbols
jJ. and jJ.' instead of nF and nF'). In Fillunger (1913) and several subsequent publications
(Fillunger, 1914, 1929, 1930, 1935), the different possibilities of (1) concerning the value of
the uplift force were discussed. Following this, the difference ff_nF' can be positive, zero or
negative only depending on different intersecting techniques, see Fig. 1: if the porous
medium is intersected in an arbitrary manner, Le. statistically (statistical cut), the Delesseian
law, cf. Delesse (1848) and Fillunger (1935), yields nF = nF

' and thus, the uplift force
vanishes. On the other hand, if a granular porous medium with point contacts between the
grains is intersected exactly through these contact points only (grain-to-grain cut), then
nF' = 1 and thus, the total uplift force is effective. Finally, if nF' = 0 which implies a porous
medium with a closed solid surface, the "uplift force" yields in the same way as a load for
the medium under discussion. Following Fillunger, 0 ~ nF' ~ 1 contains all possibilities
which may occur in practice. Analogous with (1), Fillunger's uplift force with respect to a
volume element of the porous medium is (Fillunger, 1914):
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Fig. I. Intersecting techniques. (a) Statistical cut; (b) grain-to-grain cut; (c) closed solid surface.

(2)

In 1929 and 1930, a polemical discussion on the uplift problem took place between Fillunger
and Hoffman, but without further clarification of the problem. In contrast to Fillunger
(1914), Hoffman's idea was (Hoffman, 1929) to always use that value of nF' which yields
the most unfavourable effect for the respective dam construction, thus increasing the rigidity
of the building. This argument was strongly rejected by Fillunger (1929, 1930). Further
considerations were given to the uplift problem by Terzaghi (1933) and Terzaghi and
Rendulic (1934). It should be mentioned, however, that Terzaghi (1925) had already
considered the uplift problem in his famous book "Erdbaumechanik auf boden­
physikalischer Grundlage", where he gave the correct formula for the uplift force. Never­
theless, the fundamental idea of Terzaghi (1933) was to substitute the surface porosity nF

'

in Fillunger's uplift formula (I) by a quantity nw which he called the effective surface
porosity. In Terzaghi and Rendulic (1934), nw was determined by means of theoretical
investigations in strength ofmaterials and by experiments on concrete specimens. The result
was that nw ~ I and therefore, the full value of the uplift force must be effective. This result
was strongly attacked by Fillunger (1934a-d) who concluded that nw ~ I would mean
nearly exact point contacts between the grains of the concrete aggregates, thus producing
an unrealistic magnitude of stresses (singularities). Nevertheless, Terzaghi adhered to his
argument and one can say that his result is close to the correct value of the uplift force; his
method of proof, however, has to be refused.

In the subsequent period, Heinrich and Desoyer (1955, 1956) elaborated on the uplift
problem with two remarkable papers. Raats (1968) later stated with respect to the con­
siderable confusion concerning the different forces acting on the solid phase of porous
media: "The work of Heinrich and Desoyer is an outstanding exemption in this respect,
but apparently it has been noted by only a few investigators". However, with respect to the
different intersecting techniques, Heinrich and Desoyer supported the results of Fillunger
(1913) and concluded that in the case of the statistical cut the uplift vanishes and only in
the case of the grain-to-grain cut is the full uplift effective; Raats (1968) also adhered to
these results.

Concerning the friction force associated with ftuid ftow through saturated porous
media, again, Fillunger (1914) started the scientific investigations. In Fillunger (1929) (the
polemic treatise against Hoffman), a vector equation for the friction force 'YR was given
with respect to a volume element of the porous medium, viz. :

'YR =,{(k.-grad p). (3)

In (3), which is restricted to water ftow through porous media, k is a vertical unit force
vector (downwards oriented) and grad p the gradient of the liquid pressure p. In contrast
to Fillunger, Hoffman (1929) concluded that
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Fig. 2. Profile of liquid interface in circular tubes.

YR = Yw-gradp
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(4)

where Yw reduces to k if the pore liquid consists of pure water. Hoffman's result proved
to be the correct formula for the friction force. Terzaghi and Rendulic (1934) obtained an
equation similar to (3) apart from the fact that nF was substituted by nw with n~ ~ 1.

Corresponding to Fillunger's results, Heinrich and Desoyer (1956) found a dependence
between the friction force and the respective intersecting technique (similar to the uplift
question) and Raats (1968) again adhered to this procedure which only leads to the correct
result in case of a grain-to-grain cut.

The theoretical treatment of capillary forces in saturated porous media was closely
connected with the investigations of the uplift problem. Terzaghi (1933) gave the formula

p=ymH1 (5)

where p is the hydrostatic tension for the pore liquid caused by capillarity, "l is the specific
weight of the liquid, m is an uplift coefficient similar to nw mentioned above and H I is the
capillary rise. Terzaghi concluded with respect to the vaporization process at the down­
stream face of masonry dams that the suction for the pore liquid causes an additional
pressure for the masonry: " ... die in der Verdunstungszone wirksame Oberfiichenspannung
des Wassers erzeugt im Bereich der Luftseite der Mauer eine zusitzliche Druck­
beanspruchung, die durch eine gleichgrof3e Zugspannung im stromenden Porenwasser aus­
geglichen wird". This point of view can only be explained if one considers the profile of
liquid interface, e.g. in circular tubes, see Fig. 2, where the surface stresses (1s ofthe meniscus
cause an axial pressure (1A for the wall of the tube; radial and tangential stresses are
neglected. Since Terzaghi found by experiment a value for the capillary rise of 20 m and
thus a considerable pressure for the masonry, it was only natural for Fillunger (1934e) to
attack Terzaghi's result again which he considered to be completely unrealistic: "Zwar liiBt
die Natur sichjede Erkliirung gefallen, allein sie halt sich nicht daran". In Fillunger (l934e),
the different possibilities of (5) were discussed but in the main statement, i.e. that the
capillary suction for the fluid causes an additional pressure for the solid phase, Fillunger
agreed with Terzaghi. Section 4 will prove that, from a macroscopic point of view, this was
a wrong conclusion.
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3. LIQUID-SATURATED POROUS SOLIDS: CONTINUUM APPROACH

Proceeding from general porous media theories, the present section concerns a brief
review on kinematics, balance laws and the entropy principle for mixtures together with
the concept of volume fractions. In addition, the results of the constitutive theory for the
model under discussion are offered. Concerning the different notions and several further
information, the reader is referred to de Boer and Ehlers (1986) and Ehlers (I 989c). In what
follows, all functions introduced are assumed to be sufficiently smooth in space-time.

Considering a liquid-saturated porous medium as an immiscible binary mixture of
incompressible constituents qJi with particles ,Xi, i = S (solid phase), F (liquid phase), a
macroscopic formulation implies a model of superimposed continua where at any time t
each spatial point x of the current configuration is simultaneously occupied by particles ,Xi
ofconstituents qJl. These particles proceed from different reference positions Xi' Thus, each
constituent is assigned its own motion function, viz. :

The volume fractions

x = Xi(Xi, t). (6)

(7)

are defined as the local ratios of the constituent volumes vt with respect to the bulk volume
V. Associated with each qJi is an effective density piR which is defined as the mass of qJi per
unit of vt and a partial or bulk density pi defined as the mass of qJi per unit of V. The
density functions are related by

(8)

Constituent incompressibility, as assumed for the present binary model, implies that the
effective densities are constant during deformation, i.e. :

/R = const. (9)

From (8) and (9), it is evident that constituent incompressibility does not cause macroscopic
incompressibility of qJi since the bulk densities can still change through changes in volume
fractions.

Excluding mass exchanges between the solid and liquid phases, the concept of volume
fractions and the constituent balance equations are given with respect to de Boer and Ehlers
(1986) or Ehlers (1989b,c) as follows.

Concept of volume fractions:

Balance of mass:

M+pl div Xi = O.

Balance of momentum :

div Ti+pi(b- Xi)+pl = 0,
pS+pF = o.

Balance of moment of momentum:

(10)

(11)

(12)
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Balance of energy:
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T i = TT; -'r.
MS +1VV = o.

pie~ = -pi'xi+Ti'Li+p'f-div qi+el,

eS+eF= 0.

(13)

(14)

In these equations, pi, Mi and ei are the supply terms of momentum. moment of momentum
and energy representing the transfers to cpj caused by the other constituent that occupies x
at time t. For the present binary model, the momentum supplies may also be interpreted
as interaction forces per unit of bulk volume. The quantities T j

, f/, r i and qi are the partial
Cauchy stresses, internal energy densities, external heat supplies and heat influx vectors of
cpi. In using the external body force density b instead of b', it is understood that

The material time derivatives (...); are defined by

, 0(...) I

( .. ')j = ----at +grad (...)·x j ,

(15)

(16)

Xj characterizing the constituent velocities of cpi. Additionally, Xi are the corresponding
constituent accelerations. The symbol grad denotes partial differentiation with respect to
the spatial position x; div is the divergence operator corresponding to grad. Finally,

L j = grad Xi (17)

is the spatial velocity gradient of cpj.
Considering incompressible constituents as used in the present context, (8) and (11)

combine to

hl+ni div Xj = 0, (18)

i.e. the balance of mass equations reduce to balance equations for the volume fractions. It
is well known that incompressibility of all the constituents of the respective medium gives
rise to a certain constraint to be incorporated into the entropy inequality of the model.
Such a constraint was first suggested by Mills (1966) in the frame of a simple mixture of
incompressible Newtonian fluids and later by Craine (1971) and Atkin and Craine (1976b).
In the frame of porous media theories, an incompressibility constraint of the same type was
first used by Bowen (1980, 1984) and later by de Boer and Ehlers (1986) and Ehlers (1988,
1989b,c). From (18) and the material time derivative of (10) following the motion of one
of the two constituents, the constraint for the present model reads

(19)

where ;. is a Langrangian multiplier.
Using (19), the entropy inequality for the present binary model governed by a single

absolute temperature function

(20)

turns out to yield (Ehlers, 1989b,c):
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-q,.~-q,~-0H _(pF-). grad ,r). (xF-xs)-(pSKTS _ns).I)' LS_(pFKTF -nF).I)· LF

I
- E>h'grad E> ~ 0 (21)

where

(22)

In these relations 'Pi and Hi are the constituent free energy and entropy functions per unit
of bulk volume,

(23)

are the chemical potential tensors as introduced by Bowen (1967) or Bowen and Wiese
(1969), respectively, and h is the influx vector for the respective medium defined by

h = hS+hF
,

hi = qi+E>Hiui.

The diffusion velocities

relate the constituent velocities to the mean velocity field

(24)

(25)

. l(sl F')
X = - p Xs +P XF ,

P
(26)

Thus, the symbol (...)" characterizes the material time derivative following the mean velocity
i, i.e.:

. 0(...) .
(...) = ---at + grad (...). x. (27)

From the preceding considerations, the present model is defined by the balance equations
for the volume fractions (18), the mixture balance equations (12)-(14) and the entropy
inequality (21) together with the following set of constitutive postulates which, from the
principle of equipresence, must be assumed in the first place as functions of a common set
of independent external variables <1», viz. :

In (28)2'

Fs = Grads x,

Gs = Grads Fs (29)

are the first and second solid deformation gradients and DF is the symmetric part of LF•

The symbol Gradi denotes partial differentiation with respect to the reference position of
q/.

The set <I» defines a homogeneous second-grade medium, cf. Wang (1973), where
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Grad j n~j = 0,

Grad, p'j; = 0, (30)

n~1 and P~~ characterizing the volume fractions and effective densities in the reference
positions of q/. Note in passing that (28h represents the only unique choice of independent
variables for the incompressible binary model under discussion to be related from a general
set of variables for arbitrary porous media (Ehlers, 1989c). For a modification of (28h
towards porous media elasto-plasticity in frame of finite theories, the reader is referred to
Ehlers (1988, 1989b,c) where a multiplicative decomposition of the first and second solid
deformation gradie~ts has been introduced. However, (28) defines an incompressible invis­
cid elastic skeleton saturated by an incompressible viscous liquid, thus modelling the same
type of medium as used, e.g. by Heinrich and Desoyer (1955, 1956). Furthermore, it should
be noted that (28) corresponds to Bowen (1984, 5A.4.32) except that DF has been added
due to fluid viscosity.

For the present model, thermodynamical restrictions result from the dissipation prin­
ciple (21) together with the constitutive assumptions (28). Using standard arguments
(Bowen, 1976) combined with several symmetry and skew-symmetry conditions (de Boer
and Ehlers, 1986; Ehlers, 1989c) it is easily seen that a linear expansion about the so-called
mixture equilibrium state

yields the model to be governed by

(31)

'PI, H =I(e, Fs),

o'P·
H= - oe' (32)

o'P·
PSKTS _ nSAI = - - FS

T

oFs '

p~TF -nF,H = -2pFDF-;.F(DF'I)I, (33)

(34)

(35)

In (35), the symbol (...)t defines a contraction of the arguments in brackets towards a
vector. In case of isotropic permeability,

(36)

where '1FR is the effective specific weight of the pore liquid and k! the coefficient of per­
meability.

For an extended derivation of (31)-(36), the reader is referred to Ehlers (1989b,c). In
the above equations,

(37)

where p.' and A' are the macroscopic shear and bulk viscosities of the liquid phase, lXe is
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the entropy coupling parameter for the present single temperature model and Pe the
coefficient of thermal conductivity for the whole system. However. it should be noted that
even if the liquid constituent is assumed to be incompressible,

so that),f must generally be incorporated into the theory.
Combining (23) and (33), one obtains

£l'P·
TS = ('Ps-nSl)I+ £lF

s
FL

TF = ('PF-nFl)I+2JlFDF+l.F(DF·I)I.

(38)

(39)

From these equations, it is easily seen that the partial stresses T i are symmetric, namely, as
a result of a linear expansion of 'Pi about the state 4> = 4>0 (mixture equilibrium).

In case ofDF = 0, the liquid pressure is defined by

(40)

where

(41)

characterizes the effective pressure of the incompressible pore liquid.
For several purposes it is convenient to use the free energy densities ",i instead of the

functions 'Pi.

Following this, (35) and (39)-(42) combine to yield

TS = -nspI+Ti,

TF = -nFpI+T~,

pF = P grad nF+p~

where

(42)

(43)

(44)

As is usual in theories ofconstrained materials, the index (.. ')E denotes the so-called "extra
quantities"; concerning the notion "extra", the reader is referred to Truesdell and Noll
(1965, Section 30). Moreover, when deriving (43) and (44),
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holds where
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(45)

(46)

has been used. The latter equations are a direct consequence of (8)-(10) in connection with

to be obtained by integration of (18). Similarly, it is easily proved that

T- I (O,¥F 1. Y. ,¥F F T-I ( FO'V 1. )!
Fs oF

s
GS ) = nF grad n +Fs p oF

s
Gs .

(47)

(48)

From the above considerations, the medium under discussion is properly defined by the
respective balance equations together with the results of the constitutive theory. Finally,
note in passing that for the present single temperature model it was not necessary to give
constitutive equations for the energy supplies ei since the temperature variation for the
whole system must be calculated from the sum of the energy balances (14), viz. :

-q,~-q,~-eIi-H(e+e div i)_iJF. (xF-xs)-pSKTS 'Ls

-pFKTF'LF+p,J-div b = 0 (49)

where

(50)

denotes the inner part of the external heat supplies as defined by Truesdell and Toupin
(1960, Section 243).

Concerning constitutive equations for the free energy densities ifJ; in the elastic range
of the solid material, the reader is referred to Ehlers (l989a) where a new finite elasticity
law for porous media is introduced. A general expansion of the theory towards elasto­
plastic skeletons with respect to finite theories can be taken from Ehlers (1988) and Ehlers
(1989b,c). Furthermore, the plastic response of ductile and, especially, granular porous
materials will be the subject of a forthcoming report (de Boer and Ehlers, 1989).

4. UPLIFT, FRICTION AND CAPILLARY FORCES IN THE LIGHT OF
POROUS MEDIA THEORIES

In using the results of Section 3, the questions of uplift, friction and capillary forces
can be clarified on the basis of general porous media theories. In order to compare the
following conclusions with the classical results of Section 2, the problem is restricted to
the isothermal case. In addition, inertia effects are neglected, thus reducing the general
deformation process of the skeleton to the statical case. As is usual in hydraulics, the latter
assumption means that liquid flow through porous solids is considered as lingering flow,
compare, e.g. Hamel (1934). From the preceding considerations, the momentum balance
equations (12) reduce to
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Fig. 3. Liquid-saturated soil with free ground-water level A-B. (a) Capillary zone; (b) flow zone.

div TS+pSb_pF =0

div TF+pFb+pF = 0

where

b = g,

S3

(51)

(52)

Le. the external body force density is identified with the gravity field which can be related
from a potential U, viz. :

g = -grad U. (53)

The definitions (51)-(53) together with the assumption of a binary medium of incom­
pressible constituents correspond directly to Heinrich and Desoyer (1955,1956).

By use of (10), it follows from (43), (51) and (52) that

where

p~ = -r+rt grad p_pFg,

r =divT~.

(54)

(55)

In hydraulics as well as fluid mechanics, r usually defines the viscosity force of the pore
liquid. In covering the fields ofground-water flow through soil or pore water flow through
earth dams, masonry or concrete dams, respectively, r can generally be neglected in
comparison with the other terms incorporated into (55)" cf. de Boer and Ehlers (1986,
Section 5.1).

In eliminating the extra momentum supply, (54) and (55). combine to yield

(56)

Further modifications of this equation are due to the pressure head h, in the flow zone or
the suction head h, in the capillary zone, compare e.g. Fig. 3.

Thus,
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P U
h = hp = yFR + Igl'

p U
h = h, = yFR + Iii . (57)

Since in both cases p defines the effective liquid pressure given by (41), another version of
(57)2 is

U p,
h=h,=--­Igl yFR

where P, characterizes the effective liquid suction in the capillary zone.
From (56) and (57), one obtains

where (52) and (53) together with the obvious conclusion

grad yiR = grad (piR IgD= 0

(58)

(59)

(60)

have been used.
It is easily seen that (59) directly corresponds to Heinrich and Desoyer (1956, eqn (9a»

except for the fact that these authors arrived at their result by use of a special intersecting
technique, namely the so-called grain-to-grain cut. The difference between the latter result
and (59), however, lies in the fact that the extra solid stresses Tit are incorporated into
(59) which, from (44) .. are a unique function ofthe deformation process, whereas concluded
from the grain-to-grain cut, Heinrich and Desoyer (1956, eqn (9a» contains the total partial
stress tensor TS

, compare (43)\. The reason for this obvious difference is motivated as
follows: Heinrich and Desoyer investigated the incompressible model ofa liquid-saturated
porous solid, thus elaborating on the same type of problem as discussed in Section 3
of the present article. In the frame of a purely mechanical theory, however, Heinrich and
Desoyer did not realize an incompressibility constraint of type (19) which made it neces­
sary to use a special intersecting technique to arrive at the desired result. Nevertheless,
it seems that Heinrich and Desoyer (1956, p. 83) recognized this fundamental problem,
since they wrote: "In einer Kontinuumstheorie konnen die Deformationen bzw. Deforma­
tionsgeschwindigkeiten nur einen Zusammenhang mit den Schnittspannungen besitzen,
sie konnen aber nicht direkt in Zusammenhang gebracht werden mit zusatzlichen Kriften
wie z.D. Druckkriften, die von der Fliissigkeit auf das Skelett wirken". The foregoing
remarks should not be understood as a criticism of the outstanding work of Heinrich and
Desoyer, since in the years 1955 and 1956 on the one hand, mixture theories and porous
media theories, respectively, had not been developed, and on the other hand, the method to
derive thermodynamical restrictions from thedissipation principlewascompletely unknown
even for single continua and, finally, the handling of incompressible continua, especially in
the frame of heterogeneous media, was awaiting research.

In visualizing (59), it is easily seen that this relation consists of three parts which, apart
from div T~, are characterized in the flow zone by the friction force and the specific weight
reduced by uplift. Following this, the uplift force is given by

t In soil mechanics, the notion "extra stress" is usuany substituted, fonowing Terzaghi, by the notion "effective
stress".
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k = - nS'U FR -!.
U f Igl'

55

(61)

(62)

On the other hand, if one assumes grad h = 0, which represents the simplest case to be
considered, one directly concludes from (53), (57) and (62) that

ku = (nF -l)grad p,

grad p = yFR I:' = const.

(63)

Thus, it is evident that in porous media theories, corresponding to the principle of Arch­
imedes, the unreduced uplift force is effective. Furthermore, (63) is equivalent to the
approximate solution of Terzaghi and Rendulic (1934) but corresponds to Fillunger, com­
pare (2), only in case of a selected intersecting technique, namely the grain-to-grain cut. In
addition, (61) and (62) equal the results of Heinrich and Desoyer (1956), again, only in case
of a grain-to-grain cut.

From (59), the friction force in the flow zone yields, with h = hp ,

kf = _yFR grad hp ,

or respectively, by use of (53), (57) I and (60):

k FR g d'/ = y Iii -gra p.

(64)

(65)

These results directly correspond to Hoffman (1929), to the approximate solution of
Terzaghi and Rendulic (1934) and, in case of a grain-to-grain cut, to Fillunger (1929);
compare (3) in the case when the pore liquid consists of pure water. Finally, it corresponds
to Heinrich and Desoyer (1956) as well.

Finally, since (59) is not only valid in the flow zone but also in the capillary zone, one
easily concludes the capillary force to yield

kc = _yFR grad hI

= 'U
FR -!. +grad p

f Igi I

where (58) has been used.
The effective liquid suction is given by

FR(U )P, = -p = Y iii-hI

(66)

(67)

hI characterizing the capillary rise, compare, e.g. Fig. 3. Thus, (67) directly corresponds to
the approximate solution of Terzaghi (1933) when using m = nw :::: 1, compare (5).

Concerning the solid phase (56) and (67) combine to
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(68)

From (68), it is easily seen that, in frame of a macroscopic theory. the stress

fS = T~+PII (69)

in the capillary zone is effected by an additional hydrostatic tension PI and not. as assumed
by Terzaghi (1933) or Fillunger (1934e), by an additional capillary pressure.

Finally, it should be noted that friction and capillary forces only occur if grad h ::j:. 0,

Le. in the case of flow processes in the flow zone or in the case of vaporization processes at
the downstream face o( the suction zone, respectively. The uplift force, however, is always
effective.

5. CONCLUDING REMARKS

In the present paper, the question of uplift, friction and capillary forces has been
discussed on the basis ofporous media theories, thus using a unified macroscopic approach
to liquid-saturated porous media. In frame of this procedure, the concept of volume
fractions according to the Delesseian law implies that the statistical cut is the only acceptable
intersecting technique. Other intersecting techniques as introduced by Fillunger (the grain­
to-grain cut or the closed solid surface) can only be used as a boundary condition for the
respective surface of the medium and not in the frame of an arbitrary internal cut.

In using the same type of model as Heinrich and Desoyer, Le. an incompressible
skeleton saturated by an incompressible liquid, it could be shown via thermodynamics of
heterogeneous media (including an incompressibility constraint to be incorporated into the
dissipation principle of the model) that the unreduced values of the uplift, friction and
capillary forces must be applied. This obvious result corresponds to the results of Fillunger
or Heinrich and Desoyer, respectively, only by use ofan internal grain-to-grain intersecting
technique. The results of Hoffman, Terzaghi and Terzaghi and Rendulic are effectively or
approximately correct, apart from the fact that Terzaghi (and Fillunger) concluded the
effective liquid suction in the capillary zone to yield a capillary pressure for the skeleton.
As mentioned in Section 2, this obvious misunderstanding can only be explained in con­
nection with the profile of liquid interface, e.g. in circular tubes, compare Fig. 2, when only
the axial pressure for the wall of the tube is considered and not the radial or tangential
stresses as well. Regarding this artificial approach as belonging more to a microscopic than
a macroscopic point of view, we end the article with a quotation from Fillunger (1934e,
p. 12): "Die voranstehenden Betrachtungen sind nicht vollkommen befriedigend, da
von den drei Hauptnormalspannungen des Spannungszustands, der als Folge der Ober­
flachenspannungen des Wassers in einem durchtrankten porosen Korper entsteht, nur eine,
niimlich der Kapillardruck (j berechnet wurde. In einem Rohr herrschen auBer
dem Achsialdruck (j noch tangentiale und radiale Spannungen. Diesen entsprechen im
durchtriinkten porosen Korper ebenfalls gewisse Spannungen, doch kann tiber sie nur
wenig VerliiBliches ausgesagt werden".
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